










































































































































































































REVISION MIDTERM 1
Sections 1.2 - 1.6, 2.1 - 2.4, 3.1 - 3.3



IMPORTANT NOTE:  
These slides do not revise all the material! 

They’re not sufficient to revise for the exam! 

They’re meant as a guide to some of the  
key concepts in the course.



CHAPTER 1
Mainly: the different DE’s and techniques to solve them



Sec 1.2. Integrals as general and particular solutions 

dny
dxn = f(x)• The SIMPLEST equation 

Solution method: integrate both sides  times to obtainn

y = ∫ …∫ f(x) dxn

EQUATION

Note: don’t forget to integrate the integration constants!



Sec 1.3. Slope fields and solution curves 
TYPICAL QUESTION (midterm 1 fall 2024)

Solution method: fill in some well chosen points.
If ,  so B and E are impossible.x = 0 y′ = 0 If ,  so A is impossible.y = 0 y′ = 0
If ,  so the answer is Dx = 1,y = 1 y′ = − 1



Sec 1.4. Separable equations and applications

dy
dx

= g(x)h(y)• SEPARABLE equation 

Solution method: 

∫ dy
h(y) = ∫ g(x) dx

EQUATION

1. Assume . Values of  for which this is true are the singular solutions.


2. Assume . Divide both sides by , multiply both sides with , and 
integrate to get

h(y) = 0 y

h(y) ≠ 0 h(y) dx

Note: you don’t need an integration constant for the integral on the left-hand-side
3. Combine singular and general solutions



Sec 1.5. Linear first order ODEs

y′ + yP(x) = Q(x)• LINEAR FIRST ORDER equation 

Solution method: 

EQUATION

Note: you don’t need an integration constant for∫ P(x)dx

1. Calculate 

2. Multiply the DE by  to get 


3. Recognise left-hand-side as 

4. Integrate both sides w.r.t. x. 

5. Solve for 

ρ(x) = e ∫ P(x)dx

ρ(x) y′ ρ(x) + yP(x)ρ(x) = Q(x)ρ(x)
(yρ(x))′ 

y



Sec 1.5. Linear first order ODEs
TYPICAL QUESTION (Spring 2023 Midterm 1)

Solution method:  

1. Set up the DE as described in notes (or book)


2. Solve DE and find  by using initial values (in this case at )


3. Plug in  in solution

c t = 0, x = 50
t = 20



Sec 1.6. Substitution methods
GENERAL METHOD

To substitute  into a DE you need to express  as a function of 


 and , say  and use this function to find .


(Don’t forget that  is a function of !)


Then you replace every occurrence of  and  by their expressions in terms of 

 and 

v(x) = f(x, y) y
v(x) x y = g(v(x), x) dy

dx
= d

dx
g(v(x), x)

v x
y

dy
dx

v(x) x

Note: don’t forget to substitute  back in terms of  and  at the end!  
You want a solution of the form , NOT 

v(x) y x
y = . . . v = . . .



Sec 1.6. Substitution methods

dy
dx

= f ( y
x )• HOMOGENEOUS equation 

Solution method: 

EQUATIONS

1. Set , and thus 


2. From this it follows that 


3. Replacing  in the DE gives  , which is separable

v(x) = y(x)
x

y(x) = v(x)x
dy
dx

= d
dx

(v(x)x) = dv
dx

x + v(x)

y(x), y′ (x) dv
dx

x + v = f (v)



Sec 1.6. Substitution methods

dy
dx

+ yP(x) = Q(x)yn• Bernouilli equation 

Solution method: 

EQUATIONS

1. Set , and thus 


2. From this it follows that 


3. Replacing  in the DE then gives a linear first order equation

v(x) = y(x)1−n y(x) = v(x) 1
1 − n

dy
dx

= d
dx

(v(x) 1
1 − n) = 1

1 − n
v(x) n

1 − n
dv
dx

y(x), y′ (x)



Sec 1.6. Substitution methods

Note: typically the Bernouilli equation comes with the demand that  or .  
This is purely so you won’t have to worry about taking roots of negative numbers  
or dividing by . Just write your solution and add that it only works for those x for  
which  or  (depending on which demand it is). 

You don’t have to calculate the values of  for which this is true!

y ≠ 0 y > 0

0
y ≠ 0 y > 0

x



Sec 1.6. Substitution methods

M(x, y)dx + N(x, y)dy = 0• (possibly) EXACT equation 

Proving exactness on open rectangle  in -plane:R xy

EQUATIONS

If  are continuous on  then DE is exact if and only if M, N, ∂M
∂y

, ∂N
∂x

R
∂M
∂y

= ∂N
∂x



Sec 1.6. Substitution methods

M(x, y)dx + N(x, y)dy = 0• (possibly) EXACT equation 

Solution method:

EQUATIONS

1. If DE is exact there exists an  such that  is the solution and 


A. 


B.

F(x, y) F(x, y) = c
∂F(x, y)

∂x
= M(x, y),

∂F(x, y)
∂y

= N(x, y)



Sec 1.6. Substitution methods

M(x, y)dx + N(x, y)dy = 0• (possibly) EXACT equation 

Solution method (continued):

EQUATIONS

2. From (A) we see that    

Note: This is a partial integral, so integration const = . 

3. Now plug  from step 2. into (B) to obtain a differential equation for 

4. Solve this DE and you’ve found , the solution is then 

F(x, y) = ∫ M(x, y)dx
g(y)

F(x, y) g(y)
F(x, y) F(x, y) = c



Sec 1.6. Substitution methods

f (y, dy
dx

, d2y
dx2 ) = 0

• REDUCIBLE EQUATIONS 

EQUATIONS

f (x, dy
dx

, d2y
dx2 ) = 0

(A) (B)Doesn’t contain x Doesn’t contain y



Sec 1.6. Substitution methods

• REDUCIBLE TYPE A

Solution method:

EQUATIONS

1. Use  as variable and substitute , so 


2. The new equation becomes 


3. Solve this equation to find  as a function of : 


4. Solve  for  as a function of 

y v(y) = dy
dx

d2y
dx2 = dv

dx
= dv

dy
dy
dx

= dv
dy

v

f (y, v, dv
dy

v) = 0

v y v = g(y)

v = dy
dx

= g(y) y x

f (y, dy
dx

, d2y
dx2 ) = 0



Sec 1.6. Substitution methods

• REDUCIBLE TYPE B

Solution method:

EQUATIONS

1. Keep  as variable and substitute , so 


2. The new equation becomes 


3. Solve this equation to find  as a function of : 


4. Solve  for  as a function of 

x v(x) = dy
dx

d2y
dx2 = dv

dx

f (x, v, dv
dx ) = 0

v x v = g(x)

v = dy
dx

= g(x) y x

f (x, dy
dx

, d2y
dx2 ) = 0



CHAPTER 2
Mainly: applications of the DE’s of chapter 1



Sec 2.1. Population models

• MORE GENERAL POPULATION MODEL

Solution method:

EQUATIONS

1. This is a separable equation

2. Singular solutions: values of  such that 

3. General solution: need to use partial fraction decomposition to compute 

integral 

P aP − bP2 = 0

dP
dt

= aP − bP2



Sec 2.2. Equilibria and bifurcations

Equilibria (or critical points): Values of  for which y h(y) = 0

EQUATIONS
dy
dx

= h(y) (or dP
dt

= h(P))

Types of equilibria: depends on behaviour solutions near equilibria.  
Can be determined using sign of  (even without solving the DE!)h(y)

y1

y2

y3Example

y sign(h(y)) = sign(y′ )

+

+
-
+

Semistable
Unstable

Stable



Sec 2.2. Equilibria and bifurcations

# of equilibria depends on value of  h

EQUATIONS
dP
dx

= aP − bP2 − h• POPULATION WITH HARVESTING

Value of  for which # of equilibria changes = bifurcation pointh
Diagram that shows values of equilibria as function of  = bifurcation diagramh



Sec 2.3. Acceleration-Velocity models
EQUATIONS

Air resistance can be linear  or quadratic  and  
always opposes direction of motion:  
sign depends on how you set up your axes!

FR = ± kv FR = ± kv2

Equations are set up using Newton’s second law: Ftotal = m
dv
dt

Notes:  

(1) the equation you obtain is always separable 

(2) You don’t need to solve the equations to get info on equilibria



Sec 2.4. Eulers method
IDEA

A solution to an IVP of the from  can be 
approximated with step size  and number of steps  by repeatedly 
replacing  by  until a point 

 is obtained

y′ = f(x, y), f(x0) = y0
h n

(xi, yi) (xi+1, yi+1) = (xi + h, yi + hf(xi, yi))
(xn, yn)



CHAPTER 3
Mainly: homogeneous linear DEs with constant coefficients



Sec 3.3 Homogeneous equations with  
constant coefficients
EQUATION

n

∑
i=0

aiDiy = 0

Solution method:

1. Set up the characteristic equation 


2. Solve the equation and obtain roots  (some of them possibly equal)

3. Each real root  with multiplicity  provides the following term to the solution 



4. Each pair of complex roots  provides the following 

terms to the solution 



n

∑
i=0

airi = 0

r1, …, rn

r m
(c0 + c1x + ⋯cm−1xm−1)erx

r = a + ib, r = a − ib
(c0 + c1x + ⋯cm−1xm−1)eax cos(bx) + (cm + cm+1x + ⋯c2m−1xm−1)eax sin(bx)



Sec 3.3 Homogeneous equations with  
constant coefficients
EQUATION

n

∑
i=0

aiDiy = 0

IMPORTANT NOTES

1. Each constant in each term provided by the various roots is a different 
constant (I used the same notation in both real and complex case because 
the correct notation is too cumbersome and distracting)


2. You should get as many constants  as the degree of the DEc1, …, cn





















































































































Original slides by Gert Vercleyen

REVISION MIDTERM 2
Sections 3.4 - 3.6, 4.1 - 4.2, 5.1 - 5.5



IMPORTANT NOTE:  
These slides do not revise all the material! 

They’re not sufficient to revise for the exam! 

They’re meant as a guide to some of the  
key concepts in the course.



CHAPTER 3
Mainly: Particular solutions to LnDEs and springs



Sec 3.5. Nonhomogeneous equations and undetermined coefficients

L(y) =
n

∑
i=0

aiDiy = f(x)

Solution: y = yh + yp

Non-hom equation

general sol to hom eqn (with )f(x) = 0
any 1 sol to whole eqn

Methods to find :yp

1. Undetermined Coefficients 

2. Variation of parameters



Sec 3.5. Nonhomogeneous equations and undetermined coefficients

Undetermined coefficients
1. First of all: if  then , where 

 for all .


2. If  (or  if you split  up in parts) is of the form

f(x) = f1(x) + ⋯ + fn(x) yp = yp1
+ ⋯ + ypn

L(ypi
) = fi(x) i

f(x) fi(x) f(x)
    or   pm(x)eax cos(bx) pm(x)eax sin(bx)

There are 2 possibilities:
A.  nor any of its derivatives solve the hom eqn  

 


B.  or any of its derivatives solves the hom eqn  
 

f(x) L(y) = 0
⇒ yp = (A0 + A1x +⋯+ Amxm)eax cos(bx) + (B0 + B1x +⋯+ Bmxm)eax sin(bx)

f(x) L(y) = 0
⇒ yp = xs((A0 + A1x +⋯+ Amxm)eax cos(bx) + (B0 + B1x +⋯+ Bmxm)eax sin(bx))

’th degree polynomialm

Where  is the smallest integer > 0 such that  does not contain a term 
that solve the hom eqn

s yp



If  is not of the form 


or some of the coefficients  are functions of  you need find  by using 
the following formula 


f(x)

ai x yp

Sec 3.5. Nonhomogeneous equations and undetermined coefficients

Variation of parameters

    or   pm(x)eax cos(bx) pm(x)eax sin(bx)

yp = − y1 ∫
y2 f(x)

W(y1, y2)
dx + y2 ∫

y1 f(x)
W(y1, y2)

dx

where  are two linearly independent solutions to the hom eqn 
 and  is their Wronskian


y1, y2
L(y) = 0 W(y1, y2)



Sec 3.5. Nonhomogeneous equations and undetermined coefficients

TYPICAL QUESTIONS
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Sec 3.5. Nonhomogeneous equations and undetermined coefficients
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Sec 3.4 and 3.6 Mechanical vibrations
General equation for mass attached to spring

mx′ ′ + cx′ + kx = F0 cos(ωt)
You need to know how to solve this equation for the following scenarios


• : no external force so just Lin hom 2nd order DE 


• If c = 0: no damping. Solutions can be written as . 
You should know how to convert  to  

! 

•  if : damping so either under/over/critically-damped system depending on 
values of . You should know which scenario occurs for which values!

F0 = 0
A cos(ω0t − α)

c1 cos(ω0t) + c2 sin(ω0t)
A cos(ω0t − α)

c ≠ 0
m, c, k



Sec 3.4 and 3.6 Mechanical vibrations
General equation for mass attached to spring

mx′ ′ + cx′ + kx = F0 cos(ωt)
You need to know how to solve this equation for the following scenarios


• : no external force so just Lin hom 2nd order DE 


• If : no damping. Resonance occurs if !  

•  if : damping so could have practical resonance.

F0 ≠ 0

c = 0 ω = ω0 ( = k/m)
c ≠ 0



Sec 3.4 and 3.6 Mechanical vibrations
General equation for mass attached to spring

mx′ ′ + cx′ + kx = F0 cos(ωt)
You should know the following terminology and how to obtain this data from the DE


• The natural angular velocity of the unforced spring: 


• The natural period of the motion of the unforced spring: 


• The natural frequency of the unforced spring: 


• The amplitude of the motion of the unforced undamped spring: .  
This depends on initial conditions: it is the value  in the solution 

ω0 = k/m
T = 2π/ω0

f = ω0/(2π)
A

A
x = A cos(ω0t − α)



TYPICAL QUESTIONS (Fall 2024 Final)
Sec 3.4 and 3.6 Mechanical vibrations



TYPICAL QUESTIONS (SPRING 2023 Final)
Sec 3.4 and 3.6 Mechanical vibrations



CHAPTER 4
Mainly: Mainly converting between systems of  

1st order DEs and higher order DEs



Sec 4.1 First order systems and applications

x(n) = f(xn−1, …, x′ , x, t) Equation 

Can be converted to system by setting , so  xi = x(i)

CONVERTING FROM HIGHER ORDER DE TO SYSTEM

x′ 0 = x1
x′ 1 = x2

x′ n−2 = xn−1
x′ n−1 = f(xn−1, …, x1, x0, t)

⋮{



Sec 4.1 First order systems and applications

x′ 1 =
n

∑
i=0

p1,i(t)xi + f1(t)IVP of the form  

STRONG THEOREM FOR SPECIAL LINEAR SYSTEMS

⋮
x′ n =

n

∑
i=0

pn,i(t)xi + fn(t)

(or equivalently, of the form ), satisfies: if all  and  are continuous on  
some open interval  to which  belongs then the system has exactly 1 sol on 

x′ = Ax pi,j fi
I a I

xi(a) = bi i = 1,…nfor

{



Sec 4.2 Method of elimination

Elimination can be used to convert from system of eqns to (several)  
higher order equation(s). For details: see section 4.2 in the book. 

CONVERTING FROM SYSTEM TO HIGHER ORDER

Important remarks: 

1. Using elimination might create fake integration constants: constants that  
appear to be arbitrary but actually depend on one another. To know how  
many constants are expected: see pg 246 (green box) of the book 

2. Because of this: avoid this technique whenever possible. If your system  
is in the form , always use techniques from chapter 5 to solve it!  
Techniques in this chapter are only useful for systems where the LHS of  
some equations contain multiple derivatives (e.g. eqns of the form  
 like )

x′ = Ax

x′ 1 + x′ 2 = …, x′ 1 − 2x′ 2 = …



TYPICAL QUESTIONS 
SP

RI
N

G
 

20
22

 
M

ID
TE

RM
 2

FA
LL

 2
02

4 
M

ID
TE

RM
 2

Sec 4.1-4.2



CHAPTER 5
Mainly: Solving systems of 1st order homogeneous DEs  

with constant coeffs



EQUATION
x′ (t) = Ax(t)

Solution strategy
1. Compute eigenvalues: Let , solve .


2. For each , 


1. Determine : how often does it appear as a root of 
the polynomial ?


2. Find all eigenvectors for the eigenvalue  by solving 


3. If you found  evecs,  provides the following solutions: 
 

Mλ = A − λ1 det(Mλ) = 0
λ

k = algmult(λ)
det(Mλ)

λ Mλv = 0
k λ

xλ,1 = v1eλt, …, xλ,k = vkeλt

Sec 5.1, 5.2, 5.5



EQUATION
x′ (t) = Ax(t)

Solution strategy
4. If you found less than  evecs: need to find generalized evecs of  

until we have  generalized evecs in total: 
To find gen evecs: for every evec  of  compute chain 

 as follows.  
Start with  and solve  with  to find , 
if this equation has a solution, solve  with  to 
find  and so on until the equation  has no 
solution.  
You construct a chain for every eigenvector of  until you found a 
total (counting all evecs in all chains) of  evecs of .

k λ
k

v λ
{v[1], …, v[m]}

v[1] = v Mλv[i+1] = v[i] i = 1 v[2]

Mλv[i+1] = v[i] i = 2
v[3] Mλv[i+1] = v[i]

λ
k λ

Sec 5.1, 5.2, 5.5



EQUATION
x′ (t) = Ax(t)

Solution strategy

5. Every chain  of evecs of  provides the following solutions  

  

{v[1], …, v[m]} λ
x[1]

λ = v[1]eλt, x[2]
λ = (v[1]t + v[2])eλt, x[3]

λ = (v[1] t2

2 + v[2]t + v[3])eλt, …
Note: If any of the  are complex then that  has a conjugate eval  (which you 
should ignore) and it brings forth 2 solutions rather than 1.  
These are just the real and complex part of the solution that  provides:

 
If a complex eval is defect, i.e. there are not enough evecs to provide all 
solutions you just find generalized complex evecs and set the solution up as 
usual. At the end, you split every complex solution up in 2 real ones by taking 
real and imaginary parts. 

λ λ λ

λ
xλ,1 = Re(vλeλt), xλ,2 = Im(vλeλt)

Sec 5.1, 5.2, 5.5



EQUATION
x′ (t) = Ax(t)

Solution strategy

5. Every chain  of evecs of  provides the following solutions  

  

{v[1], …, v[m]} λ
x[1]

λ = v[1]eλt, x[2]
λ = (v[1]t + v[2])eλt, x[3]

λ = (v[1] t2

2 + v[2]t + v[3])eλt, …
Note: If any of the  are complex then that  has a conjugate eval  (which you 
should ignore) and it brings forth 2 solutions rather than 1.  
These are just the real and complex part of the solution that  provides:

 
If a complex eval is defect, i.e. there are not enough evecs to provide all 
solutions you just find generalized complex evecs and set the solution up as 
usual. At the end, you split every complex solution up in 2 real ones by taking 
real and imaginary parts. 

λ λ λ

λ
xλ,1 = Re(vλeλt), xλ,2 = Im(vλeλt)

Sec 5.1, 5.2, 5.5
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Sec 5.1, 5.2, 5.5



Sec 5.3

For system with 2 equations  you need to know what solutions 
look like based on the eigenvalues of the matrix . 


An overview of all scenarios can be found in the book on pages 318-319.


 
It is important to know the names of the various situations!  
NOTE: I forgot to mention the case of parallel lines with 2 zero 
eigenvalues and repeated eivenvector


x′ = Ax
A
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